Characterization and mechanical testing of alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes fabricated by spark plasma sintering

نویسندگان

  • K. E. Thomson
  • D. Jiang
  • W. Yao
  • R. O. Ritchie
چکیده

Alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes (CNT) were fabricated by advanced powder processing techniques and consolidated by spark plasma sintering. Raman spectroscopy revealed that single-walled carbon nanotubes (SWCNT) begin to break down at sintering temperatures >1150 C. Nuclear magnetic resonance showed that, although thermodynamically unlikely, no Al4C3 formed in the CNT–alumina nanocomposites, such that the nanocomposite can be considered as purely a physical mixture with no chemical bond formed between the nanotubes and ceramic matrix. In addition, in situ single-edge notched bend tests were conducted on niobium and/or CNT-reinforced alumina nanocomposites to assess their toughness. Despite the absence of subcritical crack growth, average fracture toughness values of 6.1 and 3.3 MPa m were measured for 10 vol.% Nb and 10 vol.% Nb–5 vol.% SWCNT–alumina, respectively. Corresponding tests for the alumina nanocomposites containing 5 vol.% SWCNT, 10 vol.% SWCNT, 5 vol.% double-walled-CNT and 10 vol.% Nb yielded average fracture toughnesses of 3.0, 2.8, 3.3 and 4.0 MPa m, respectively. It appears that the reason for not observing improvement in fracture toughness of CNT-reinforced samples is because of either damage to CNTs or possibly non-optimal interfacial bonding between CNT-alumina. 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Nanostructured Cu matrix Nanocomposites by High Energy Mechanical Milling and Spark Plasma Sintering

Spark plasma sintering (SPS) is a sintering process that is capable of sintering hard worked powders in short times. This technique was used to fabricate bulk Cu and Cu-SiC nanocomposites. Pure Cu and mixed powders of Cu including 4 vol% of SiC nanoparticles were mechanically alloyed for 25 h and sintered at 750˚C under vacuum condition by SPS method. Microstructures of the materials were chara...

متن کامل

Friction stir welding of Al-Al2O3 nanocomposite with bimodal size of alumina reinforcement produced by spark plasma sintering

Solid state joining of powder metallurgy (P/M) processed and sintered by spark plasma sintering through friction stir welding (FSW) was studied. The nanocomposites were prepared via mechanical milling followed by spark plasma sintering. The microstructural and mechanical of the joints were evaluated as a function of the different processing parameters such as rotating and advancing speeds of th...

متن کامل

Friction stir welding of Al-Al2O3 nanocomposite with bimodal size of alumina reinforcement produced by spark plasma sintering

Solid state joining of powder metallurgy (P/M) processed and sintered by spark plasma sintering through friction stir welding (FSW) was studied. The nanocomposites were prepared via mechanical milling followed by spark plasma sintering. The microstructural and mechanical of the joints were evaluated as a function of the different processing parameters such as rotating and advancing speeds of th...

متن کامل

Spark Plasma Sintering of Ultra-High Temperature Tantalum/Hafnium Carbides Composite

TaC and HfC are thought to have the highest melting point (~4000°C) among all refractory materials. The binary solid solution of TaC and HfC (Ta4HfC5) is also considered as the most refractory material with the melting point over 4000 °C and valuable physical and mechanical properties. The main goal of this work is to fabricate TaC/HfCbased composites which consolidated by means of spark plasma...

متن کامل

Effect of SiC nanoparticles addition on mechanical properties and wear resistance of cemented carbides fabricated by spark plasma sintering

WC-10Co cemented carbides containing 1 to 4 wt% SiC nanoparticles were prepared by spark plasma sintering. The effects of SiC content on microstructure, mechanical properties and wear resistance of the sintered materials were studied. Microstructural studies showed that SiC addition resulted in WC grain coarsening. In addition, the hardness decreased with increasing SiC content. However, the fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011